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Comrarison oF Four NuMERICAL METHODS
FOR Froop Rourting?

Discussion by Danny L. Fread,> M. ASCE

The author has presented a valuable comparison of four finite difference
techniques for solving the complete one-dimensional Saint Venant equations
of unsteady flow. Since the writer has found the four-point implicit method
tooffer important advantages as mentioned by the author, the following comments
are concerned with this particular technique.

The author states that the four-point implicit method cannot be used if there
is no rating equation or hydrograph available at the downstream boundary.
When there is no important flow disturbance downstream of the routing reach
which can propagate into the reach and influence the flow, a rating equation
is always available. Such a rating equation is the Chezy or Manning equation
which provides a single-valued or multivalued stage-discharge relationship. The
extent to which the relationship is multivalued, as manifested by the ‘‘loop
rating curve,” is dependent upon the extent to which the ratio, S;/S,, departs
from unity. The four-point implicit method, which utilizes the generalized Newton
iteration technique to solve the system of nonlinear finite difference equations,
is well suited for using a specified downstream boundary condition formulated
from the Chezy or Manning equation. Such a boundary condition is given by
the following expression written in terms of the Chezy equation:

QF' —(CARMISYHn =0 . ... (28)

in which S ;‘“ is approximated from Eq. 2 expressed in finite difference form
for the A x,_, subreach.

The author points out a potential difficulty in selecting a proper time step
when applying the four-point implicit method to floods that exceed the channel
capacity and propagate along the overbank or flood plain. As the author states,
the rate of propagation is different for the channel flow. as compared to the
overbank flow due to differences in the hydraulic properties of each. In addition,
when the channel meanders through the flood plain, the time of travel is different
through each due to differences in the two reach lengths. The one-dimensional
Saint Venant equations can be formulated to conveniently simulate flows in
meandering channels with flood plains as follows.

Let Q= Q.+ Qy, where the subscripts ¢ and f denote channel and flood
plain, respzctively. Also, assume that Q. and Q, are related by means of the
Chezy equation in which S, is approximated by the water surface slope, A /A x.
Then, the Szint Venant equations become:

*July, 1974, by Roland K. Price (Proc. Paper 10659).
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and h = the water surface elevation such that oh/ax = 3y/dx — S,

When the four-point implicit method is applied to Egs. 29 and 30 to determine
the unknowns, Qand h, the coefficient matrix in the generalized Newton iteration
technique has exactly the same form as when Eqgs. 1 and 2 are used. This
feature of Eqgs. 29 and 30 is an important convenience.

The selection of an optimum time step suitable for both the channel and
flood-plain flows can be accomplished by means of the selection of the proper
size space step, Axg, for the flood plain. Since
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Thus, if Ax_ is selected according to spatial variations in channel geomeuy
and to provide 2 suitably large ratio (wave length/A x ) for desirable convergence
properties, then Eq. 36 will provide guidance in the selection of AXx. In this
way At will be optimum for both the channel and flood-plain flows. Since
C,is less than C_, A x,will be smaller than A x_; this should present no difficulty
since the spatial variations in the geometry of the flood plain are usually less
than for tae chaanel.

Although the author states that he encountered =0 instability when (h€ 9
weighting factor of the four-point implicit method was 1/2, the writer b3
experienced the weakly stable condition associated with 6 of 1 /2 when simulating
some floods in the Lower Mississippi River. The weakly stable condition i
manifested by bounded oscillations of the solution about the true solution. The
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writer found that they could be eliminated by either increasing 0 to about 0.55
or decreasing A t from 24 hr to about 3 hr.

The writer (19) has investigated the stability of the four-point implicit method
for the following simplified version of Eqs. 1 and 2:
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h = the water surface elevation; and Y, and V, are mean values of depth and
velocity, respectively. An expression for stability (in the sense of the von Neumann
conjecture that linear operators with variable coefficients are stable if all their
localized operators in which the coefficients are taken constant are stable) is
given by the following expression: »
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in which a = gY,(At/Ax)? tan? (wAx/L); b = kAt; and L = wavelength
= wave celerity x duration. :

If |\] < 1, independent of the values of Axand A't, the errors due to truncation
and roundoff will not grow with time, and the difference equations are uncondi-
tionally linearly stable. This is the case when 1/2 <= 6 < 1, although only
weakly stable (i.e., [\| = 1) when 8 = 1/2 and k approaches zero.
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